
www.manaraa.com

 1

Al al-Bayt University

Prince Hussein Bin Abdullah College for Information Technology

Irregular Strategy for Sub-mesh Allocation strategy in 2D

Mesh-Connected Multicomputers

الأبعاد ثنائيةللتخصيص في متعددات الحواسيب الشبكية ةالغير منتظم الإستراتيجية

By

Ra'ed Thiab Awwad Al Harafsheh

1320901009

Supervisor

Dr. Saad Bani-Mohammed

Co-supervisor

Prof. Ismail Ababneh

This Thesis was Submitted in Partial Fulfillment of the Requirements for
the Master's Degree of Science in Computer Science

May, 2016

www.manaraa.com

 2

Dedication

This thesis is dedicated to my parents,

my wife, my children, and Dr.Saad

Bani-Mohammad for their courtliness,

love,appreciating to support and

encouragement.

To every one who ask Allah to help

me in my thesis. For all their, I ask my

God to give them what they wish, and I

thank all of them.

www.manaraa.com

 3

Acknowledgments

This thesis was monitored by my main supervisor, Dr. Saad Bani-Mohammed and my

co-supervisor, Prof. Ismail Ababneh, who spent a lot of time helping me to write the

thesis. I am grateful for them to help me in choosing the main idea of the thesis,

obtaining the results, writing the thesis and moreover the encouragement to complete

this thesis perfectly.

On another hand, I would like to thank the university with its crew for facilitating the

research procedures, and my family for encouraging me. Also, special thanks to my

wife who stood by me, supported and encouraged me all the time during my study. I

could not finish this without her, I will remember her efforts forever.

Ra'ed TH. Al Harafsheh

www.manaraa.com

 4

Table of contents

1. Introduction …………...……..……………..…………………………………. 1

 1.1 Introduction ……………………………..…………….……………….…... 1

 1.2 Motivations and Contributions …………….……………………….. 3

 1.3 Outline of the Thesis ………………………………………………………. 5

2. Background and preliminaries…………………………………………….... 6

 2.1 Related Work ………………………………………………………………... 6

 2.2 System Model ……………………………………………………………...... 9

 2.3 The Simulation Tool (ProcSimity Simulator) ……………………. 10

 3. Irregular Shape Allocation (ISA) . 13

 3.1 Preliminaries .. 13

 3.2 Irregular Shape Allocation strategy (ISA) 15

 3.2.1 ISA allocation ... 15

 3.2.2 ISA de-allocation……………………………………………………… 26

 3.3 Performance Evaluation……………………………………………………... 29

www.manaraa.com

 5

3.4 Conclusions .. 39

4. Conclusions and Future works .. 40

 4.1 Summary of the Results …………..……………………….……………….... 40

 4.2 Directions for the Future Work……………………….…………… 41

5. References …………………………………………………………………….............. 42

www.manaraa.com

 6

List of Figures

Figure Name of figure page

Figure 2.1: Mesh and free page list for the paging row-major(1)allocation

strategy.
7

Figure 2.2: (a) a mesh (88) before allocating a job of (33).

(b) the mesh after allocating a job request (33).

9

Figure 3.1: An Example of 8 * 8 2D mesh. 15

Figure 3.2: (a) a mesh (88) before allocating a job of(27),

(b) the mesh after allocating a job request of 14 processors .

18

Figure 3.3: (a) a mesh (88) before allocating job (23),

 (b) the mesh after allocating the job request of 6 processors.

19

Figure 3.4: (a) a mesh (88) before allocating job (33),

 (b) the mesh after allocating the job request of 9 processors.

24

Figure 3.5: Outline of the ISA NON-Contiguous Allocation Strategy. 26

Figure 3.6: (a) a mesh (88) before de-allocating a job of(27),

 (b) the mesh after de-allocating a job request of 14 processors.

28

Figure 3.7: Outline of the ISA Non-contiguous De-Allocation Strategy. 29

Figure 3.8: Average turnaround time vs. system load using uniform

distribution in a16x16 mesh with communication pattern all to all.

34

Figure 3.9: Average turnaround time vs. system load using uniform

distribution in a 16x16 mesh with communication pattern one to

all.

34

www.manaraa.com

 7

Figure 3.10: Average turnaround time vs. system load using uniform

distribution in a 16x16 mesh with communication pattern random.

35

Figure 3.11: Average turnaround time vs. system load using uniform

distribution in a 16x16 mesh and communication pattern near

neighbor.

35

Figure 3.12: Average utilization vs. system load using uniform distribution in a

16x16 mesh with communication pattern one to all.

36

Figure 3.13: Average utilization vs. system load using uniform distribution in a

16x16 mesh with communication pattern random.

37

Figure 3.14: Average utilization vs. system load using uniform distribution in a

16x16 mesh with communication pattern all to all.

37

Figure 3.15: Average utilization vs. system load using uniform distribution in a

16x16 mesh with communication pattern near neighbors.

38

www.manaraa.com

 8

List of Tables

Table Name of table page

Table 3.1: The system parameters used in the simulation experiments 31

Table 3.2: Show the results of utilization when contiguous and noncontiguous

allocation strategies handle a system saturation with job size taken

with communication pattern one to all, all to all, random and near

neighbors.

38

www.manaraa.com

 9

List of Abbreviations

 Abbreviation Meaning

 MBS Multiple Buddy Strategy

 FCFS First-Come-First-Served

 FF First Fit

 BF Best Fit

 ISA Irregular Shape Allocation

www.manaraa.com

 10

Abstract

Contiguous and non-contiguous processor allocation strategies are two categories of the

processor allocation strategies used to allocate an incoming job request in the mesh-

connected multicomputer. Contiguous allocation suffers from high processor

fragmentations as the processors allocated to a job are physically contiguous and have

the same topology as that of the interconnection network of the multicomputer. This

leads to a degradation in system performance in terms of average turnaround time of

jobs and mean system utilization. In non-contiguous allocation, a job can execute on

separate smaller sub-meshes rather than waiting until a single sub-mesh of the requested

size and rectangular shape is available. Although non-contiguous allocation increases

message contention inside the network, lifting the contiguity condition can reduce

processor fragmentation and increase system utilization. Most existing non-contiguous

allocation strategies that have been suggested for the mesh suffer from processor

fragmentation and message contention inside the network. In addition, the allocated

sub-meshes should be in regular shapes. In this thesis, we present a new non-contiguous

allocation strategy, referred to as irregular shape allocation (ISA) strategy that

eliminates processor fragmentation and alleviates the contention inside the network. The

main idea of ISA is that it does not depend on rectangular shape as other previous

allocation strategies, where the allocated sub-meshes in ISA can be in any shape

(regular or irregular), in order to improve the system performance in terms of job

turnaround time and system utilization. We compare the performance of ISA with that

of the well-known contiguous and non-contiguous allocation strategies. The simulation

results have shown that the ISA allocation strategy has the same performance in terms

of both job turnaround time and system utilization as Paging(0) and MBS when the

communication pattern used is one to all, and better performance in terms of both job

www.manaraa.com

 11

turnaround time and system utilization than that of the previous allocation strategies

considered in this thesis when the communication patterns used are all to all and

random. While the result show that the contiguous allocation strategy perform better

than non contiguous allocation strategy in terms of job turnaround time when

communication pattern used is near neighbor.

www.manaraa.com

 12

Chapter 1

Introduction

1.1 introduction

Many problems such as Atmosphere, chemistry, physics, defense and web search are so

large and/or complex that it is impractical or impossible to solve them on a single

computer, especially given limited computer memory. So, there is a need to build a

parallel computer from cheap commodity components (Gottlieb, Allan. Almasi, George

S, 1989). Parallel computing is the use of multiple computer resources to solve large

problems concurrently by dividing the problem into smaller ones (Fan Wu, Ching-Chi

Hsu, and Chou, Li-Ping, 2003). Parallel computing has become the dominant paradigm

in computer architecture, mainly in the form of multi-core processors (Asanovic, et al.,

2006).

Parallel computers can be roughly classified according to the level at which the

hardware supports parallelism, with multi-core and multi-processor computers having

multiple processing elements within a single machine, while clusters and grids use

multiple computers to work on the same task. Specialized parallel computer

architectures are sometimes used alongside traditional processors, for accelerating

specific tasks (Asanovic, et al., 2006), considering the interconnection network between

the processors and the message interaction in a mesh-connected multicomputer. Both

two dimensional (2D) and three-dimensional (3D) meshes and tori have been used in

recent commercial and experimental parallel computers, such as the Intel Paragon (Intel

Crop, Paragon XP/S Product Overview, Internet 2015), the IBM BlueGene/L (Gara et

al.,2005), and the Cray XT3 (Cray, Cray XT3 Datasheet, Internet 2015), and they have

www.manaraa.com

 13

gained increasing importance in the design of distributed memory multi processor

systems. This is due to their regularity, scalability, simplicity, partition ability and ease

of construction (Seo, K.-H, 2005). To achieve high performance in mesh connected

multicomputer, processor allocation strategies have been proposed in order to increase

system utilization and decrease job turnaround time, where system utilization is the

percentage of processors that are utilized over time (ProcSimity V4.3, 1997), and job

turnaround time is the time that the job spends in the mesh system from arrival to

departure (ProcSimity V4.3, 1997).

In computing, processor allocation is necessary for any application to be executed on

the system, it is responsible to select and allocate free processors to newly arrived jobs

to be able to execute. While the scheduler controls the order in which waiting jobs in the

waiting queue are executed (ProcSimity V4.3, 1997). Processor allocation strategies are

divided into two types: contiguous (Chiu, G.-M. Chen, S.-K, 1999, Chuang, P.-J. Tzeng,

N.-F, 1994), and non-contiguous (Bani-Mohammad, et al., 2007, Lo, et al. 1997), that

are employed in a multicomputer. In contiguous allocation, the processors that are

allocated to a parallel job are physically contiguous and have the same shape of the

mesh system. Contiguous allocation suffers from both internal and external

fragmentation (Bani-Mohammad, et al.,2009, Chang, C.-Y. and Mohapatra, P, 1998,

Lo, et al., 1997). Internal processor fragmentation occurs when the allocation strategy

allocates processors for an incoming job request more than it requires, while external

processor fragmentations occurs when there are enough number of free processors in

the mesh system but they cannot be allocated because they do not have a rectangular

shape (Attari S and Isazadeh, 2006, Moghaddam S. and Naghibzadeh, M, 2006, Chang,

C.-Y. and Mohapatra, P, 1998). The problem of internal and external fragmentation has

been eliminated by using the non-contiguous allocation. In non-contiguous allocation,

www.manaraa.com

 14

the job can execute on multiple disjoint smaller sub-networks rather than always

waiting until a single sub-network of the requested size and shape is available (Chang,

C.-Y. and Mohapatra, P, 1998, Lo, et al., 1997), and this results in improving the system

performance in terms of system utilization and job turnaround time.

The main goal of any allocation strategy is to improve system performance. To achieve

this goal, the allocation strategies should concentrate on three pivots: minimizing

processor fragmentation, increasing the system utilization and decreasing the job

turnaround time. So, a new non-contiguous allocation strategy has been proposed in this

thesis to achieve these three pivots. The proposed strategy differs from the previous

strategies by allocation the sub-mesh of the processors regardless of its shape (regular or

irregular).

1.2 Motivation and Contribution

Contiguous and non-contiguous allocations are used to allocate an incoming job request

to the appropriate sub-mesh size in the mesh-connected multicomputer. As previously

reported in Section 1.1, contiguous allocation suffers from high processor fragmentation

as the processors allocated to a job are physically contiguous and have the same shape

of the interconnection network. This causes degradation in system performance in terms

of average turnaround time of job and mean system utilization. Non-contiguous

allocation achieves high performance over contiguous allocation strategies, because the

job request can be split into smaller parts rather than always waiting until a sub-mesh of

the requested size and rectangle shape is available. The main factors that affect the

performance of the processor allocation strategies include processor fragmentations

(internal and external) and message contention. Most non-contiguous allocation

www.manaraa.com

 15

strategies that have been suggested for the mesh suffer from processor fragmentation

and message contention inside the network (Bani-Mohammad, et al., 2006, Lo, et al.,

1997). Moreover, the contiguous and non-contiguous allocation strategies proposed for

2D meshes always allocate an incoming job request in a regular shape (Lo, et al., 1997).

Motivated by the above observations, this thesis presents a new non-contiguous

allocation strategy that always allocate an incoming job request while the requested

number of free processors is available in the mesh-connected multicomputer. This

proposed strategy is referred to as Irregular Shape Allocation (ISA) strategy that

eliminates the processor fragmentation and alleviates the contention inside the network.

The main idea of ISA is that it does not depend on rectangular shape as other previous

allocation strategies, where the allocated sub-meshes in ISA can be in any shape

(regular or irregular), and hence improves the system performance in term of job

turnaround time and system utilization. The performance of ISA is compared against

that of the existing non-contiguous allocation strategies Paging(0) (Lo, et al., 1997),

Random (Lo, et al., 1997) and MBS (Lo, et al., 1997). These strategies have been

selected because they have been shown to perform well in (Fan Wu, Ching-Chi Hsu,

and Chou, Li-Ping, 2003). Furthermore, ISA is also compared against the contiguous

First Fit strategy (FF) (Zhu, Y. H, 1992), as this has been used in several previous

related studies (Yoo, B.-S and Das, C.-R, 2002). The proposed strategy improves the

system performance in terms of job turnaround time and system utilization as compared

to the existing contiguous and non-contiguous allocation strategy considered in this

thesis.

www.manaraa.com

 16

1.3 Outline of thesis

The rest of the thesis is organized as follows. Chapter 2 describes the well-known

allocation strategies that have been proposed for 2D mesh-connected multicomputer and

considered in this thesis; it also presents the system model assumed in this thesis.

Finally, the chapter justifies the selection of simulation as a study tool.

Chapter 3 introduces the proposed allocation algorithm as a new non-contiguous

allocation algorithm for 2D Mesh-Connected multicomputer, and presents the

definitions for the proposed algorithm and also the required notations related to mesh

network. The ISA allocation and de-allocation process are explained in this chapter, and

extensive simulation experiments are carried out to evaluate the performance of the

proposed algorithm and compare it with the previous contiguous and non-contiguous

allocation strategies.

Chapter 4 summarizes the results presented in this work and introduces some directions

for future work.

www.manaraa.com

 17

Chapter 2

Background and Preliminaries

2.1 Related Work:

In this section a brief description of some allocation strategies that have been suggested

for 2D network is presented.

First-Fit (FF) and Best-Fit (BF) strategies: In these strategies (Zhu, Y. H, 1992), the

free sub-meshes are scanned and the job is allocated to the appropriate free sub-mesh.

The FF strategy allocates an incoming job to the first available sub-mesh it finds, while

the BF strategy tries to allocate the job to a sub-mesh that has the largest number of

busy neighbors and smallest surrounding free area.

Random: In this strategy (Lo, et al., 1997), an incoming job request, which is a request

for n processors, is allocated randomly if there are enough processors for an incoming

job request. The random strategy eliminates both the internal and external

fragmentation, but there is no contiguity enforced under this strategy, so we expect

much communication interference between jobs' messages.

Paging Allocation Strategy: In this strategy (Lo, et al., 1997), the entire 2D mesh is

initially divided into pages, which are square blocks having the side lengths of
sizepage

2

, where the page is the basic unit of allocation. In this strategy, the pages are scanned

according to the indexing schemes (row-major indexing, shuffled row-major indexing,

snake-like indexing, and shuffled snake-like indexing). If a job requests for k

processors, then the requested number of processors will be removed from the list of

free processors and the corresponding pages are allocated.

www.manaraa.com

 18

Figure 2.1 shows an example of the paging allocation, which uses the row-major

indexing scheme and a page size of (22 blocks). Assume a job requests for seven

processors. The first two items in the list of free processor (1st, 4th) as shown in figure

2.1 are removed and the eight processors are allocated, which causes an internal

fragmentation of (0.125). When the page-size is 0, then there is neither internal nor

external fragmentation.

Free page list

Figure 2.1: Mesh and free page list for the paging row-major (1) allocation strategy.

Multiple Buddy Strategy (MBS): This strategy (Lo, et al., 1997) is an extension of the

2D buddy strategy (Li, K. Cheng, K.-H, 1991). In MBS, the mesh system is initially

divided into non-overlapped square sub meshes with side lengths that are power of 2. In

general, a request for n processors is represented as a base-4 number of the form

0
2

0
2

1
,2

1
2,........,

1
2

1
2,22

mmmm
, where pm 4log .

If a block of a desired size is

unavailable, MBS searches for a larger block and continuously breaks it down until it

reaches the appropriate size.

<2,0> 1

 <0,2> 4

 <4,2> 6

 <6,2> 7

 <0,4> 8

 <2,4> 9

<8,0>

<8,8>

12 13 14 15

8 9 10 11

4 5 6 7

0 1 2 3

<0,0>

<0,8>

unallocated

 allocated

www.manaraa.com

 19

Leapfrog: In this strategy (Fan Wu, Ching-Chi Hsu, and Chou, Li-Ping, 2003), a new

data structure, the R-array, is proposed to represent the mesh at first. The allocated

processors are represented by a negative value, while the non-allocated processors are

represented by a positive value. Both negative and positive values represent the number

of allocated and non-allocated processors followed that value, respectively. The

leapfrog can jump to the processors that can serve as a base of a free sub-mesh, which

causes the search space faster than any other strategies considered in this thesis.

Assume a job j(w, h) arrives to the mesh M(W, H). The allocation process in leapfrog

will start scanning from the lower leftmost coordinate R(0, 0) to check whether the scan

reaches the right or top reject sets. If the process reaches the right reject set, the process

directs its scan to the first value of the next higher row, if the process reaches the top

reject set, the process aborts and the job is queued. However, if the currently checked

processor (i, j) is not in the right or top reject sets, the process will check h vertically

processors from processor (i, j) to processor (i, j+ h-1). With the statistical data in the R-

array, the process can determine whether these h processors are free and long enough to

form the required free sub-mesh.

Example 1: Consider the mesh system shown in Figure 2.2-(a) and assuming that a job

request of J(33) arrives to the mesh system. The first-fit process first checks R(0, 0)

and finds its value being -3. The process then leapfrogs this allocated processors and

directly reaches processor (3, 0) which is not in the right or top reject sets. Then the

process finds that the value of R(3, 0) is 5 which is positive and larger than the width of

the job (3). Then, the process intends to check whether the other two vertically values at

R(3, 1) and R(3, 2) are positive and long enough to satisfy the required job. However,

the value of R(3, 1) is -2 which is less than the width of incoming job (3), the process

then leapfrogs this allocated processors to processor (5, 0) which is also not in the right

www.manaraa.com

 20

or top reject sets and it has a positive value 3. After checking the three values in R(5, 0),

R(5, 1), and R(5, 2), the process finds that the three values at R(5, 0), R(5, 1), and R(5,

2), are positive and long enough to allocate the incoming job. Thus, the process assigns

the free sub-mesh at processor (5, 0) to the incoming job J(33) as it shown in figure

2.2-(b).

<8,0>

<8,8>

8 7 6 5 4 3 2 1

8 7 6 5 4 3 2 1

8 7 6 5 4 3 2 1

8 7 6 5 4 3 2 1

2 1 -2 -1 4 3 2 1

2 1 -2 -1 4 3 2 1

3 2 1 -2 -1 3 2 1

-3 -2 -1 5 4 3 2 1

<0,0>

<0,8>

 a b

Figure 2.2: (a) a mesh (88) before allocating a job of (33), (b) the mesh after allocating a job request

(33).

2.2 System Model

We use the simulation to evaluate and compare the performance of the non-contiguous

allocation strategies (ISA, Paging(0), Random, MBS), and the performance of the

contiguous allocation strategy (FF) with that of the proposed ISA strategy. In this thesis,

we use the communication patterns, one-to-all, all-to-all, random, and Near Neighbour

communication patterns. In one-to-all, a randomly selected processor allocated to a job

sends a message to all other processors allocated to the same job. In all-to-all

communication pattern, each processor allocated to a job sends a message to each other

<8,0>

<8,8>

8 7 6 5 4 3 2 1

8 7 6 5 4 3 2 1

8 7 6 5 4 3 2 1

8 7 6 5 4 3 2 1

2 1 -2 -1 4 3 2 1

2 1 -2 -1 4 3 2 1

3 2 1 -2 -1 3 2 1

-3. -2 -1 5 4 3 2 1

 <0,0>

<0,8>

unallocated

allocated

www.manaraa.com

 21

processors allocated to the same job. In Random communication pattern, the message

source and destination is a random pair of processors allocated to the same job. In Near

Neighbour communication pattern, each processor allocated to a job sends a message to

its neighbours (up, down, left and right). The main parameters measured in the

simulation experiments are the job turnaround time and the system utilization. The

interconnection network is the way in which the nodes connected to each other via two

unidirectional channels with no wrap-around edges, and the routing is performed in the

network through XY routing, where is the node sends a message firstly through X axis

right or left then through Y axis up or down depending on the location of destination

node. The switching method used in this thesis is the wormhole switching (also called

wormhole routing) to determine the way messages are handled as they travel through

intermediate nodes. This type of switching has been used in this thesis as it has been

widely used in practical multicomputer due to its low buffering requirement and good

performance (ProcSimity V4.3, 1997). In this thesis, our focus is on the performance of

allocation strategies. Thus we fixed the choice of scheduling algorithm using the

straight forward First-Come-First-Served (FCFS) scheduling.

2.3 The Simulation Tool (ProcSimity Simulator)

ProcSimity is a software tool written in C programming language for research in the

area of processor allocation and job scheduling for distributed memory multicomputer

(ProcSimity V4.3, 1997). ProcSimity was developed at the University of Oregon

(ProcSimity V4.3, 1997), it is widely used for processor allocation and job scheduling

in mesh-connected multicomputer (Ababneh, I and Fraij, 2001, Ababneh, I, 2006, Bani-

Mohammad, et al.,2007, Bani-Mohammad, et al., 2006, Lo, Bunde, D. P. Leung, V. J.

and Mache, J, 2004, Mache, J. Lo, V. and Garg, S, 2000, Lo, V. and Mache, J, 2002,

www.manaraa.com

 22

Mache, J. Lo, V and Windisch, K, 1997, Lo, et al., 1997), because it is an open source

and also it has detailed operations of multicomputer networks (ProcSimity V4.3, 1997,

Windisch, K. Miller, J. V. and Lo, V, 1995).

The tool supports experimentation for highly parallel systems based on the mesh and k-

ary n-cube topologies, and for a range of control and routing technologies. ProcSimity

has some main issues, it models a stream of independent user incoming jobs in the

system and processor allocation, where the selection of a set of processors for a newly

incoming job depends on the job request for a specific number of processors or a

specific sized block. The processors are allocated for their entire lifetime, and then

released when the execution is completed. The processor allocation algorithms included

in our tool are divided into two categories: contiguous allocation algorithms, in which

the set of processors allocated to a job request are physically contiguous and non-

contiguous allocation algorithms, in which the processors allocated to a job are

dispersed over all the mesh.

Processor scheduling that refers to the scheduling discipline used at the job level

controls the selections of the next job for which processors are to be allocated. If the

mesh has enough processors for an incoming job, then the free processors are allocated

to that job, otherwise the incoming job is sent to the system waiting queue. Before a

waiting job can leave the waiting queue, the scheduler must place the job at the head of

the queue, and when a job is ready to be executed, the allocator assigns it to the

available sub-mesh of processors in the mesh, which may be contiguous or non-

contiguous, depending on the allocation strategy used. The execution job still holds the

processors in the mesh until it terminates its running, at this time it releases the

allocated processors to be used by another incoming job request. The architecture

modelled by ProcSimity consists of a network of processors interconnected through

www.manaraa.com

 23

message routers at each node. Neighbours nodes are connected by two unidirectional

channels, and messages may be routed by either store-and-forward, virtual cut-through,

or wormhole flow control.

Each simulation run contains the values of the measured metrics (utilization, turnaround

time, service time and finish time), and the final simulation results are averaged over

enough independency runs so that the confidence level is 95% and relative errors do

not exceed 5%.

www.manaraa.com

 24

Chapter 3

Irregular Shape Allocation (ISA)

3.1 Preliminaries:

The mesh is represented by M(W, H), where W is the width of mesh and H is its height.

The number of processors in the mesh system is equal to HW . The incoming job

request is represented by j(w, h), where the number of processors requested by an

incoming job is HW . The processor located in row j and column i is identified by

coordinates (j, i). The searching process starts from the lower-leftmost coordinate (0, 0)

of the mesh, where 0 <= i < W and 0 <= j < H.

Definition 1. The coverage set of regions to an incoming job is the free processors in

each row that can serve as the base of the sub-mesh to host that job, considering the

contiguity between rows. Otherwise, randomly free processors without contiguity will

be selected.

Definition 2. A free run in a mesh is a sequence of free processors along the horizontal

axis. A free run counted from processor p is defined as the sequence of free processors

whose leftmost processor is p . The length of this free run is defined as (1 + k) if

processor p is free and is followed by a sequence of k free processors, where k > 0

(Fan Wu, Ching-Chi Hsu, and Chou, Li-Ping, 2003).

Definition 3. An allocated run in a mesh is a sequence of allocated processors along a

horizontal axis. An allocated run counted from processor p is defined as the sequence

of the allocated processors whose leftmost processor is p . The length of the allocated

www.manaraa.com

 25

run is (1 + k) if processor p is allocated and is followed by a sequence of k allocated

processors, where k < 0 (Fan Wu, Ching-Chi Hsu, and Chou, Li-Ping, 2003).

Definition 4. An (r-array) is a two-dimensional array for a mesh. For each processor p,

there is an element in the r-array storing the length of the free or allocated run counted

from p . For example, if there is a free run of length v counted from processor (j, i), the

value of element (j, i) in the r-array, denoted as r(j, i), is v. If there is an allocated run of

length v counted from processor (j, i), then r(j, i) is –v (Fan Wu, Ching-Chi Hsu, and

Chou, Li-Ping, 2003). The positive value means that the number of free processors is

equal to that value. Negative number denotes to the allocated processors that are equal

to the negative value.

Definition 5. An (R-array), is a one-dimensional array that contains the first coordinates

(j, i) for all free contiguous processors in each row that should be allocated for an

incoming job request.

Definition 6. A request-array is a one-dimensional array that contains the number of

free processors in each row that can be allocated for an incoming job request.

Definition 7. A sub-mesh in mesh M(W, H), is unshaped frame, so the sub-mesh for an

incoming job request may or may not like a rectangular shape, depending on the number

of free processors in the mesh.

Figure 3.1 shows a mesh M(8, 8), that represents an allocated sub-meshes S1, S2 and S3

using ISA strategy. The gray nodes denote to the allocated processors and the white

denote to the free ones. The allocated sub-mesh can be identified by a pair of

coordinates (j, i) as a rectangular shape that is shown in allocated sub-mesh S1 in figure

3.1, and this is used in the previous allocation strategies. Moreover, the allocated sub-

www.manaraa.com

 26

mesh may not identified by a pair of coordinates (j, i) as shown in the allocated sub-

meshes S2 and S3 in figure 3.1 which is considered in our proposed ISA strategy.

<8,0>

<8,8>

8 7 6 5 4 3 2 1

8 7 6 5 4 3 2 1

1

-6 -5 -4 -3 -2 -1 1

3 2 1 -2 -1 3 2 1

3 2 1 -2 -1 3 2 1

6 5 4 3 2 1 -2 -1

6 5 4 3 2 1 -2 -1

-5 -4 -3 -2 -1 2 1 -1

<0,0>

<0,8>

unallocated

allocated

Figure 3.1: An Example of 88 2D mesh.

3.2 Irregular Shape Allocation Strategy (ISA)

In the next tow sub-sections we show how the ISA allocate the free processors to the

incoming job request, and how can it release the allocated processors to be used again

by another job request.

3.2.1 ISA allocation

When a job j(w, h), arrives to the mesh system, where w is the width of the job request

and h is its height, the allocation process starts scanning the processors in the mesh

system according to the row-major indexing scheme in an attempting to allocate the

requested sub-mesh. The idea of the proposed scheme in this thesis is to allocate the

sequence of free contiguous processors for an incoming job request as much as possible.

S3

S1

S2

www.manaraa.com

 27

To allocate the first positive value in the mesh (free base node), the algorithm starts

scanning from the lower-leftmost corner of the mesh system at node (0, 0). If it has a

negative value, the strategy skips the number of processors according to this negative

value. Otherwise the strategy starts allocating the processors from the first positive

value (first base node), considering the contiguity between processors in one row and if

hw processors are not greater than the positive value, the processors are allocated

and the allocation is done by storing the node (j, i) in R array and the positive value in

R(j, i) in request array then increment the size of R array and request array with

parameters k and re respectively. Where k is the number of processors in R array (size

of R array) and re is the number of free processors in each row that will be allocated for

a job (size of request array). If hw processors are greater than the positive value, the

strategy initially allocates the free processors starting from the first positive value (first

base node), then it stores the node (j, i) in R array and the positive value R(j, i) in

request array then increment the size of R array and request array with parameters k and

re respectively. Then, subtracts the positive value in the first base node from an original

job request to get a new job request, and then it scans for a new free processor (second

base node) in the next higher row, considering the contiguity with the previous row by

one processor at least. The strategy repeats the previous step until all processors for an

incoming job request are allocated, then the allocation is done. If the strategy reaches a

higher row in the mesh system without completely allocating the incoming job request

and there are still enough non-contiguous processors in the mesh system, then it

allocates them according to the row major scheme starting from the first node in the

mesh system. Otherwise the allocation fails, and the job is queued.

Example 1. Consider the mesh system shown in Figure 3.2-(a), and assuming that a job

request J(27), the proposed ISA strategy looks for 14 free processors, it starts scanning

www.manaraa.com

 28

from the first row of the mesh system at node (0, 0) and it finds a negative value -5 at

node (0, 0), this means that the ISA strategy skips the next 5 contiguous processors until

it reaches to the node (0, 5), and then it allocates the processors from the node (0, 5),

with a positive value of 2. Then the ISA strategy stores the node (0, 5) in R array and

the positive value 2 in request array then increment the size of R array and request array

with parameters k and re respectively. Then, subtracts the positive value 2 at node (0,

5), from an incoming job request, results in a new job request of 12 processors, then the

strategy goes to the next row, and starts scanning the row at node (1, 0), which it finds a

positive value 6, first it checks the contiguity with the previous allocation at node (0, 5),

and the contiguity is exist between the nodes (0, 5) and (1, 5). Then the ISA strategy

allocates the next 6 contiguous processors by storing the node (1, 5) in R array and the

positive value 6 in request array then increment the size of R array and request array

with parameters k and re respectively again, and then subtracts the positive value 6 at

node (1, 0), from the job request of 12 processors to get a job request of 6 processors,

then it goes to the next upper row and starts scanning it at node (2, 0), which it finds a

positive value 6 at node (2, 0), which is contiguous with the previous row, then it stores

the node (2, 0) in R array and the positive value 6 in request array then increment the

size of R array and request array with parameters k and re respectively. Then, it

subtracts the positive value 6 at node (2, 0) from the job request of 6 processors to get a

job request of 0 processors, which means that the incoming job request of 14 processors

is allocated and the allocation is done and the final value of parameters (R array, request

array, k and re), become R[0, 5, 1, 0, 2, 0], request[2, 6, 6], k = 6 and re = 3. The

incoming job request is allocated as shown in Figure 3.2-(b).

www.manaraa.com

 29

<8,0>

<8,8>

8 7 6 5 4 3 2 1

8 7 6 5 4 3 2 1

1 -6 -5 -4 -3 -2 -1 1

3 2 1 -2 -1 3 2 1

3 2 1 -2 -1 3 2 1

6 5 4 3 2 1 -2 -1

6 5 4 3 2 1 -2 -1

-5 -4 -3 -2 -1 2 1 -1

 <0,0>

<0,8>

(a) (b)

unallocated

allocated

Figure 3.2: (a) a mesh (88) before allocating a job of (27), (b) the mesh after allocating a job request

of 14 processors.

Example 2: Consider the mesh system shown in Figure 3.3-(a), and assuming that a job

request of J(23) arrives to the mesh system, then the proposed ISA strategy starts

looking for the 6 free processors. Initially, it starts scanning the mesh system from the

node (0, 0), it finds the negative value of -8, then it skips the next eight contiguous

processors until it reaches the node (0, 8), which represents the last column in the mesh

system which is not less than the width of the mesh system (W), so the proposed ISA

strategy jumps to the next upper row (row 1), and it starts scanning it from the node (1,

0), which finds a negative value of (-8), then it skips the next eight contiguous

processors until it reaches the node (1, 8), which represents the last column in the mesh

system which is also not less than the width of the mesh system (W), so it jumps again

to the next upper row (row 2), and starts the scanning process until it finds a negative

value (-8), then it skips the next eight contiguous processors until it reaches the node

(2, 8), which represents the last column in the mesh system which is again not less than

the width of the mesh (W), then it jumps to the next upper row (row 3), and starts

scanning process from the node (3, 0), until it finds a positive value of (3), then the

<8,0>

<8,8>

8 7 6 5 4 3 2 1

8 7 6 5 4 3 2 1

1 -6 -5 -4 -3 -2 -1 1

3 2 1 -2 -1 3 2 1

3 2 1 -2 -1 3 2 1

-8 -7 -6 -5 -4 -3 -2 -1

-8 -7 -6 -5 -4 -3 -2 -1

-8 -7 -6 -5 -4 -3 -2 -1

<0,0>

<0,8>

www.manaraa.com

 30

allocation process is starting by storing the node (3, 0) in R array and the positive value

3 in request array and then increment the size of R array and request array with

parameters k and re respectively. Then, it subtracts the positive value of 3 at node (3, 0)

from an incoming job request of 6 processors to get a job request of 3 processors, then it

jumps again to the next upper row (row 4), skipping the free processors in row 3

without allocation because there is no contiguity with the previous allocated processors.

In row 4, the first 3 free processors are allocated and then it stores the node (4, 0) in R

array and the positive value 3 in request array and then increment the size of R array and

request array with parameters k and re respectively. Then, the subtraction process is

repeated by subtracted the positive value 3 at node (4, 0) from the job request of 3

processors to get 0 processors, which means that the job request is allocated and

allocation is done and the final value of parameters (R array, request array, k and re),

become R[3, 0, 4, 0], request[3, 3], k = 4 and re = 2. The incoming job request is

allocated as shown in figure 3.3-(b).

 (a) (b)

unallocated

allocated

Figure 3.3: (a) a mesh (88) before allocating a job of (23), (b) the mesh after allocating the job request

of 6 processors.

<8,0>

<8,8>

8 7 6 5 4 3 2 1

8 7 6 5 4 3 2 1

1 -6 -5 -4 -3 -2 -1 1

3 2 1 -2 -1 3 2 1

3 2 1 -2 -1 3 2 1

-8 -7 -6 -5 -4 -3 -2 -1

-8 -7 -6 -5 -4 -3 -2 -1

-8 -7 -6 -5 -4 -3 -2 -1

 <0,0>

<0,8>

<8,0>

<8,8>

8 7 6 5 4 3 2 1

8 7 6 5 4 3 2 1

1 -6 -5 -4 -3 -2 -1 1

-5 -4 -3 -2 -1 3 2 1

-5 -4 -3 -2 -1 3 2 1

-8 -7 -6 -5 -4 -3 -2 -1

-8 -7 -6 -5 -4 -3 -2 -1

-8 -7 -6 -5 -4 -3 -2 -1

 <0,0>

<0,8>

www.manaraa.com

 31

Example 3: Consider the mesh system shown in Figure 3.4-(a), assuming that a job

request of J(33), arrives to the mesh system, then the proposed ISA strategy starts

looking for the 9 free processors. Firstly it starts scanning the mesh system from the

node (0, 0), it finds the positive value of 3, then the allocation process is starting by

storing the node (0, 0) in R array and the positive value 3 in request array and then

increment the size of R array and request array with parameters k and re respectively.

Then it subtracts the positive value of 3 at node (0, 0) from an incoming job request of 9

processors to get a job request of 6 processors, then it jumps again to the next upper row

(row 1), and it starts scanning it from the node (1, 0), which finds a negative value of (-

8), which means that there is no contiguity with previous free processors in previous

row (row 0), so, the ISA strategy reset all parameters (k, re, R array, request array,

JobSize), to their initial values, then restart scanning from previous row (row 0) at node

(0, 3), and it finds a negative value -5 at node (0, 3), this means that the ISA strategy

skips the next 5 contiguous processors until it reaches to the node (0, 8), which

represents the last column in the mesh system, which is not less than the width of the

mesh (W), so the proposed ISA strategy jumps to the next upper row (row 1), and it

starts scanning it from the node (1, 0), which finds a negative value of (-8), then it skips

the next eight contiguous processors until it reaches the node (1, 8), which represents

the last column in the mesh system which is not less than the width of the mesh (W),

then it jumps to the next upper row (row 2), and starts scanning process from the node

(2, 0), which finds a negative value of (-5), then it skips the next five contiguous

processors until it reaches the positive value 3 at the node (2, 5), then the allocation

process is starting by storing the node (2, 5) in R array and the positive value 3 in

request array then increment the size of R array and request array with parameters k and

re respectively. Then it subtracts the positive value of 3 at node (2, 5) from a job request

www.manaraa.com

 32

of 9 processors to get a job request of 6 processors, then it jumps again to the next upper

row (row 3), and it starts scanning it from the node (3, 0), which finds a negative value

of (-8), which means that there is no contiguity with previous free processors in row (2),

so the ISA strategy reset again the parameters (k, re, R, request, JobSize), to their initial

values, then restart scanning from previous row (row 2) at node (2, 8), which represents

the last column in the mesh system which is not less than the width of the mesh (W), so

the proposed ISA strategy jumps to the next upper row (row 3), and it starts scanning it

from the node (3, 0), which finds a negative value of (-8), then it skips the next eight

contiguous processors until it reaches the node (3, 8), which represents the last column

in the mesh system which is not less than the width of the mesh (W), then it jumps to

the next upper row (row 4), and starts scanning process from the node (4, 0), which

finds a negative value of (-5), then it skips the next five contiguous processors until it

reaches the node (4, 5), which contains the positive value of 3, then the allocation

process is starting by storing the node (4, 5) in R array and the positive value 3 in

request array and then increment the size of R array and request array with parameters k

and re respectively. Then, it subtracts the positive value of 3 at node (4, 5) from a job

request of 9 processors to get a job request of 6 processors, then jumps to the next upper

row (row 5), and starts scanning process from the node (5, 0), which finds a positive

value of 3, but still there is no contiguity with previous free processors in previous row

(row 4), so the ISA again reset the parameters (k, re, R, request, JobSize), to their initial

values, then restart scanning from previous row (row 4) at node (4, 8), which represents

the last column in the mesh system which is not less than the width of the mesh (W),

then it jumps to the next upper row (row 5), and starts scanning process from the node

(5, 0), it finds the positive value of 3, then the allocation process is starting by storing

the node (5, 0) in R array and the positive value 3 in request array and then increment

www.manaraa.com

 33

the size of R array and request array with parameters k and re respectively. Then it

subtracts the positive value of 3 at node (5, 0) from a job request of 9 processors to get a

job request of 6 processors, then jumps to the next upper row (row 6), and starts

scanning process from the node (6, 0), which finds a negative value of (-8), which

means there is no contiguity with previous free processors in row (5), so, the ISA

strategy reset again the parameters (k, re, R, request, JobSize), to their initial values, then

restart scanning from previous row (row 5) at node (5, 3), and it finds a negative value

of (-5), then it skips the next five contiguous processors until it reaches the node (5, 8),

which represents the last column in the mesh system which is not less than the width of

the mesh (W), then it jumps to the next upper row (row 6), and starts scanning process

from the node (6, 0), which finds a negative value of (-8), then it skips the next eight

contiguous processors until it reaches the node (6, 8), which represents the last column

in the mesh system which is not less than the width of the mesh (W), then it jumps to

the next upper row (row 7), and starts scanning process from the node (7, 0), which

finds a negative value of (-8), then it skips the next eight contiguous processors until it

reaches the node (7, 8), which represents the last column in the mesh system which is

not less than the width of the mesh (W), then it jumps to the next upper row (row 8),

which represents the last row (8) in the mesh system, which means the allocation is

failed and the job request is queued. As shown in the figure 3.4-(a), the allocation

algorithm (ISA) failed in allocation the free processors to the job request, while there is

enough free processors in a mesh for an incoming job J(33), this is because there is no

contiguity between free processors. So, the ISA strategy in this situation will allocate

the free processors according to the row major indexing scheme starting from the node

(0, 0). In this case the algorithm finds the positive value of 3, then the allocation process

is started by storing the node (0, 0) in R array and the positive value 3 in request array

www.manaraa.com

 34

then it increments the size of R array and request array with parameters k and re

respectively. Then it subtracts the positive value of 3 at node (0, 0) from an incoming

job request of 9 processors to get a job request of 6 processors, then it skips the next

three contiguous processors until it reaches the node (0, 3), and it finds a negative value

-5 at node (0, 3), which means that the ISA strategy skips the next 5 contiguous

processors until it reaches to the node (0, 8), which represents the last column in the

mesh system which is not less than the width of the mesh system (W), so the proposed

ISA strategy jumps to the next upper row (row 1), and it starts scanning it from the node

(1, 0), which finds a negative value of (-8), then it skips the next eight contiguous

processors until it reaches the node (1, 8), which represents the last column in the mesh

system which is not less than the width of the mesh system (W), then it jumps to the

next upper row (row 2), and starts scanning process from the node (2, 0), which finds a

negative value of (-5), then it skips the next five contiguous processors until it reaches

the node (2, 5) that contains the positive value of 3, then the allocation process is started

by storing the node (2, 5) in R array and the positive value 3 in request array and then

increment the size of R array and request array with parameters k and re respectively.

Then it subtracts the positive value of 3 at node (2, 5) from a job request of 6 processors

to get a job request of 3 processors, then it skips the next three contiguous processors

until it reaches the node (2, 8), which represents the last column in the mesh system

which is not less than the width of the mesh system (W), then it jumps to the next

upper row (row 3), and starts scanning process from the node (3, 0), which finds a

negative value of (-8), then it skips the next eight contiguous processors until it reaches

the node (3, 8), which represents the last column in the mesh system which is not less

than the width of the mesh system (W), then it jumps to the next upper row (row 4),

and starts scanning process from the node (4, 0), which finds a negative value of (-5),

www.manaraa.com

 35

then it skips the next five contiguous processors until it reaches the node (4, 5) that has

the positive value of 3, then the allocation process is started by storing the node (4, 5) in

R array and the positive value 3 in request array and then incrementing the size of R

array and request array with parameters k and re respectively. Then it subtracts the

positive value of 3 at node (4, 5) from a job request of 3 processors to get a job request

of 0 processors, which means that the job request is allocated and allocation is done. and

the final value of parameters (R array, request array, k and re), become R[0, 0, 2, 5, 4,

0], request[3, 3, 3], k = 6 and re = 3. The incoming job request is allocated as shown in

figure 3.4-(b).

(a)

(b)

Figure3.4: (a) a mesh (88) before allocating job (33), (b) the mesh after allocating the job request of 9

processors.

Allocation in ISA is implemented by the algorithm outlined in Figure 3.5.

Procedure ISA_Allocate():

{

 j // the number of rows in a mesh.

 i // the number of columns in a mesh.

<8,0>

<8,8>

-8 -7 -6 -5 -4 -3 -2 -1

-8 -7 -6 -5 -4 -3 -2 -1

3 2 1 -5 -4 -3 -2 -1

-5 -4 -3 -2 -1 3 2 1

-8 -7 -6 -5 -4 -3 -2 -1

-5 -4 -3 -2 -1 3 2 1

-8 -7 -6 -5 -4 -3 -2 -1

3 2 1 -5 -4 -3 -2 -1

 <0,0>

<0,8>

<8,0>

<8,8>

-8 -7 -6 -5 -4 -3 -2 -1

-8 -7 -6 -5 -4 -3 -2 -1

3 2 1 -5 -4 -3 -2 -1

-8 -7 -6 -5 -4 -3 -2 -1

-8 -7 -6 -5 -4 -3 -2 -1

-8 -7 -6 -5 -4 -3 -2 -1

-8 -7 -6 -5 -4 -3 -2 -1

-8 -7 -6 -5 -4 -3 -2 -1

<0,0>

<0,8>

unallocated

allocated

www.manaraa.com

 36

 r // a two dimensional array that represents all processors in the mesh.

R // a one dimensional array that is used to store the coordinates (j, i) for each

processor in a mesh that should be allocated for an incoming job

request.

Request // a one dimensional array that is used to store the job size in one row.

k // counter used for R array.

re // counter used for request array.

id // identification number for each job

Found // a boolean parameter that takes a false value initially.

array of nodes // an array of nodes where each node contains the parameters (id, k, re, R

array, request array).

JobSize // a number of processors that is required for an incoming job

start:

calculate the number of free processors (freecount)

if (freecount < number of requested processors)

{

 fail to allocate the requested processors;

}

A1: if (i >= width of the mesh){

Jump to the first processor in the next higher row according to the row major indexing

scheme.

}

If (j >= height of the mesh)

{

 go to A2;

}

If (the value in r[j][i] < 0){

jump to the next positive value and

 go to A1;

}

Store the coordinates (j, i) in R array

if (JobSize <= value in r[j][i]){

Store the jobsize in request array;

 increment the counter (re);

 found = true

go to A3;

}

Store the value in r[j][i] in request array

increment the counter (re);

updates the JobSize to JobSize = JobSize - r[j][i];

Go to the first positive value in upper row and check the contiguity with the processors that are

allocated for the incoming job request in previous row

If there is a contiguity return (j, i), otherwise return (j, -1)

If (i == -1){

Return to the first elements in R-array and start scanning from the next positive value

with the main JobSize

go to A1;

}

goto A1;

www.manaraa.com

 37

A2: if (not found)

 {

 Reset the parameters JobSize, k and re to the initial values.

 allocate the requested processors randomly based on the major indexing

 scheme;

found = true

 }

 A3: if (found)

 {

 update the r-array by giving the allocated processors a negative value

 store the parameters (id, k, re, R, request) in the array of nodes.

 Return (1);

 }

 else

 return (0);

 }

Figure 3.5: Outline of the ISA Non-Contiguous Allocation Strategy.

3.2.2 ISA De-Allocation

The de-allocation is the reverse process of allocation. When the job terminates its

running, the de-allocation process starts and de-allocate the allocated processors for the

terminating job, and then updates the values in r-array from the negative values

(allocated processors) to positive values (free processors), and as a result the processors

that were allocated for a job become now free to be used again by other job requests

(Fan Wu, Ching-Chi Hsu, and Chou, Li-Ping, 2003).

Example 1. Consider the mesh system state shown in Figure 3.6-(a), and assuming that

a job J(27) is finished, then the allocated processors for this job will be freed to be

used again. The de-allocation process in the ISA strategy starts working as the

following. Firstly, the de-allocation process compares the identification number (id) for

the finished job with the id's of the allocated jobs, which were stored in an array of

nodes so as to extract the parameters (k, re, R array, request array).

www.manaraa.com

 38

Note, each one of the coordinates of (j, i) in R array meets a one value in request array,

which means that the first coordinates of (j, i) in R array meets the first value in request

array.

In figure 3.6-(a), we show how the job J(27) is de-allocated. Firstly, the de-allocation

process compares the id of the de-allocating job with the id's that were stored in an array

of nodes through the allocation process, so as to extract the parameters (k, re, R,

request), we find the R array that has the coordinates [(0, 5), (1, 0), (2, 0)], and the

request array that has the values (2, 6, 6). The de-allocation process starts from the last

coordinates in R array down to the first coordinates depending on the parameter k, and

so in request array depending on the parameter re. The de-allocation process starts from

k = 4 after decremented it by 2 to get the coordinates (2, 0), while the last value in

request array is 6, which means that the 6 contiguous allocated processors should be de-

allocated starting from the coordinates (2, 0), then the parameter k is decremented by 2

until it becomes 2 to get the coordinates (1, 0) in R array, and parameter re is

decremented by 1 until it becomes 1, to get the previous value in request array which is

also 6, which means that the 6 contiguous allocated processors should be de-allocated

starting from the coordinates (1, 0), then the parameter k is decremented by 2 until it

becomes 0 to get the coordinates (0, 5) in R array, and parameter re is decremented by 1

until it becomes 0, to get the first value in request array which is 2, which means that

the 2 contiguous allocated processors should be de-allocated starting from the

coordinates (0, 5), then the parameter k is decremented by 2 until it becomes -2 which is

not greater than 0, which means that the de-allocation process is completed and as

shown in figure 3.6-(b), the 14 allocated processors become free to be used again by

other job requests.

www.manaraa.com

 39

(a) (b)

Figure 3.6: (a) a mesh (88) before de-allocating a job of (27), (b) the mesh after de-allocating a job

request of 14 processors.

De-Allocation in ISA is implemented by the algorithm outlined in Figure 3.7.

Procedure ISA_DE-Allocate ():

{

count1 // number of rows that is stored in R array

len1, count2, last // loop parameters

start :

if (id of the de-allocated job is in the array of nods) {

 extract the required parameters (id, k, re, R, request):

 while (k > 0) {

 count1= last row stored in R array; // extract using k-2

 i = last column stored in R array; // extract using k-1

 next= the next processor after the contiguous allocated processors in each row

 last= the values in request array; // extract using re-1;

 if (i + last < width and next is positive){

 len1= r[count1][last];

 }

 else

 len1=0;

 for (count2=1 to last)

 {

 Change the value of r[count1][last-count2] to positive value starting

from 1;

 }

<8,0>

<8,8>

8 7 6 5 4 3 2 1

8 7 6 5 4 3 2 1

1 -6 -5 -4 -3 -2 -1 1

3 2 1 -2 -1 3 2 1

3 2 1 -2 -1 3 2 1

-8 -7 -6 -5 -4 -3 -2 -1

-8 -7 -6 -5 -4 -3 -2 -1

-8 -7 -6 -5 -4 -3 -2 -1

<0,0>

<0,8>

<8,0>

<8,8>

8 7 6 5 4 3 2 1

8 7 6 5 4 3 2 1

1 -6 -5 -4 -3 -2 -1 1

3 2 1 -2 -1 3 2 1

3 2 1 -2 -1 3 2 1

6 5 4 3 2 1 -2 -1

6 5 4 3 2 1 -2 -1

-5 -4 -3 -2 -1 2 1 -1

<0,0>

<0,8>

unallocated

allocated

www.manaraa.com

 40

 If (previous processor is allocated and i-1>= 0){

 m=1;

 while (previous processor is allocated and i-m >= 0){

 store the value of –m in r[count1][i-m];

 increment m by 1;

 }

 }

 Else if (previous processor is not allocated and i-1>= 0){

 m=1;

 len2= value in r[count1][i];

 while (previous processor is not allocated and i-m >= 0){

 increment the value in r[count1][i-m] by m+len2;

 increment m by 1;

 }

 }

 Decrement k by 2;

 If k greater than 0 then

 i=R[k-1];

 Decrement re by 1;

}

A4: set the value in node where the id of de allocated job is found to 0;

break;

}

}

Figure 3.7: Outline of the ISA Non-contiguous De-Allocation Strategy.

3.3. Performance Evaluation

In this section, the results of the proposed ISA allocation strategy that have been carried

out from simulations are presented and compared against those of the Paging(0) (Lo, et

al., 1997), MBS (Lo, et al., 1997), FF (Zhu, Y. H, 1992) and Random (Lo, et al., 1997)

allocation strategies. We use C++ language to implement the ISA allocation and de-

allocation algorithms, and integrated the software into the ProcSimity simulation tool

for processor allocation and job scheduling in highly parallel systems (ProcSimity V4.3,

1997, Windisch, K. Miller, J. V. and Lo, V, 1995). The number of processors requested

www.manaraa.com

 41

by each job is generated by uniform distribution, where job widths and heights are

uniformly distributed over the range from 1 to the mesh side lengths (ProcSimity V4.3,

1997). Jobs are scheduled using the First Come First Served (FCFS) scheduling

strategy. The execution time of a job is the time it takes to finish communicating. The

execution times of jobs depend on the time needed for flits to be routed through the

nodes, packet size, the number of messages that are sent, message contention and

distances messages traverse. The interconnection network for message routing is

wormhole flow control with ordered XY routing, where the number of bytes in each

message (Message size) is 8. Each simulation run consists of 1000 completed jobs per

run and the number of runs is varied to get a confidence level of 95% and relative errors

do not exceed 5%.

 A job remains in the system until an iteration of the communication pattern is

completed. We implemented four specific communication patterns when messages are

exchanged among the processors that are allocated to a job (Bani-Mohammad, S. Ould-

Khaoua, M. and Ababneh, I, 2007, Kumar, et al., 2003). The first one is one-to-all,

where a randomly selected processor in each job sends a message to each other

processors in the same job. The second communication pattern is all-to-all, where each

processor in a job sends a message to all other processors in the same job. This

communication pattern causes much message collision and is known as the weak point

for non-contiguous allocation algorithms [Bani-Mohammad, S. Ould-Khaoua, M. and

Ababneh, I, 2007, Yoo, B.-S. Das, C.-R, 2002]. The third communication pattern is the

random communication pattern, where a randomly selected processor sends messages to

randomly selected destination within the set of processors allocated to the same job. The

fourth communication pattern is near neighbor, where each processor in a job sends a

message to its neighbors (up, down, left and right). The table below presents other

www.manaraa.com

 42

parameters that were used in the simulator. The main performance parameters used are

the average turnaround time of jobs and the mean system utilization. The independent

variable in the simulation is the system load; it is defined as the inverse of the mean

inter-arrival time of jobs.

Table 3.1: The System Parameters Used in the Simulation Experiments

Simulator Parameter

Values

Dimensions of the Mesh Architecture 16×16

Allocation Strategy Paging(0), MBS, Random, FF, ISA

Scheduling Strategy FCFS

Job Size Distribution

Uniform: Job widths and legths are

uniformly distributed over the range from 1

to the mesh side lengths.

Inter-arrival Time

Exponential with different values for the

mean. The values are determined through

experimentation with the simulator, ranged

from lower values to higher values.

Number of Runs

The number of runs should be enough so

that the confidence level is 95% that

relative errors are below 5% of the means.

The number of runs ranged from dozens to

thousands.

Number of Jobs per Run 1000

www.manaraa.com

 43

Turnaround time

In Figures (3.8-3.11), the average turnaround time of jobs are plotted against the system

load for the one to all, all to all, random, and near neighbor communication patterns

using the FCFS scheduling strategy. Figure 3.8 shows that the non-contiguous

allocation strategies considered in this thesis (Random, Paging(0), MBS and ISA)

perform better than the contiguous allocation strategy (FF). This is because the non-

contiguous allocation strategies eliminate both internal and external fragmentation and

thus improves system performance in terms of average turnaround time of jobs. The

simulation results show that the performance of the Paging(0), MBS and ISA allocation

strategies is better than that of the Random allocation strategy. This is because the

allocated processors in Random are allocated randomly which increases the distances

between allocated processors and hence increases the probability of the interference

among job's messages which in turn increases the contention and thus degrades the

system performance in terms of average turnaround time of jobs.

In Figure 3.9, the performance of the ISA allocation strategies is better than that of the

non-contiguous allocation strategies (Random, Paging(0), MBS) and contiguous

allocation strategy (FF). The simulation results show that the performance of the ISA

allocation strategies is better than that of the Paging(0), Random and MBS allocation

strategies. This is because the distances between the allocated processors in Paging(0),

Random and MBS are more than those in ISA which increases the probability of the

interference among job's messages which increases the contention and thus degrades the

system performance in terms of average turnaround time of jobs. For example, the

average turnaround time of ISA are (84%), (56%), (48%) and (77%) of that of Paging

(0), Random, MBS and FF, respectively, when the load is (0.0001) jobs/time unit.

www.manaraa.com

 44

Figure 3.10, shows that the proposed allocation strategy (ISA) performs better than all

other strategies in terms of average turnaround time of jobs using the random

communication pattern. For example, the average turnaround time of ISA are (96%),

(63%), (97%) and (52%) of that of Paging (0), Random, MBS and FF, respectively,

when the load is 0.07 jobs/time unit.

Figure 3.11, shows that the contiguous allocation strategy (FF) performs better than the

non-contiguous allocation strategies (Random, Paging(0), MBS, and ISA) for heavy

system loads. This is because in near neighbor communication pattern, each node in the

mesh sends a message to its neighbors (up, down, right, left), and because the allocated

sub-mesh in the FF contiguous allocation strategy is in the rectangular shape, so there is

no any inter-job interference and thus reduces the communication overhead. This

improves the system performance for the FF contiguous allocation strategy as compared

to that of the non-contiguous allocation strategies. The performance of Random is the

worst over all allocation strategies. This is because the allocated processors in Random

are far from each other, which increases the distances the messages traverse, and hence

increases the probability of interference among job's messages, which in turn degrades

the system performance in terms of average turnaround time of jobs. For example, in

Figure 3.11, the average turnaround times of FF are (0.6%), (0.09%), (0.6%) and (0.4%)

of that of Paging (0), Random, MBS and ISA, respectively, when the system load is

0.005 jobs/time unit.

www.manaraa.com

 45

Figure 3.8: Average turnaround time vs. system load using uniform distribution in a 16x16 mesh with

communication pattern one to all.

Figure 3.9: Average turnaround time vs. system load using uniform distribution in a 16x16 mesh with

communication pattern all to all.

0

100000

200000

300000

400000

500000
A

v
er

a
g
e

tu
rn

a
rr

o
u

n
d

 t
im

e

(t
im

e
u

n
it

)

system load

One To All

MBS Paging(0,0) ISA random ff

0
500000

1000000
1500000
2000000
2500000
3000000
3500000
4000000

A
v
er

a
g
e

tu
rn

a
rr

o
u

n
d

 t
im

e

 (
ti

m
e

u
n

it
)

system load

All To All

MBS Paging(0,0) ISA random ff

www.manaraa.com

 46

Figure 3.10: Average turnaround time vs. system load using uniform distribution in a 16x16 mesh with

communication pattern random.

Figure 3.11: Average turnaround time vs. system load using uniform distribution in a 16x16 mesh and

communication pattern near neighbor.

0

1000

2000

3000

4000

5000

6000

7000
A

v
er

a
g
e

tu
rn

a
rr

o
u

n
d

 t
im

e

 (
ti

m
e

u
n

it
)

system load

Random

MBS Paging(0,0) ISA random ff

85

90

95

100

105

110

115

120

0
20,000
40,000
60,000
80,000

100,000
120,000
140,000
160,000

S
ec

o
n

d
a
ry

 a
x
is

 f
o
r

F
F

 b
ec

u
se

o
f

th
e

sm
a
ll

 v
a
lu

se

A
v
er

a
g
e

tu
rn

a
rr

o
u

n
d

 t
im

e

 (
ti

m
e

u
n

it
)

system load

Near Neighbor

MBS Paging(0,0) ISA random ff

www.manaraa.com

 47

Utilization

In Figures (3.12-3.15), the system utilization of jobs are plotted against the system load

for the one to all, all to all, random, and near neighbor communication patterns using

the FCFS scheduling strategy. The results in these figures show that the non-contiguous

allocation strategies considered in this thesis (Random, Paging(0), MBS and ISA)

perform better than the contiguous allocation strategy (FF). This is because contiguous

allocation produces high external fragmentation, which makes allocation is less likely to

succeed. As a consequent, the mean system utilization is lower. For heavy system loads,

the utilization for all non-contiguous allocation strategies is approximately the same

because the non-contiguous allocation strategies considered in this thesis have the same

ability to eliminate internal and external processor fragmentation. They always succeed

to allocate processors to a job when the number of free processors is greater than or

equal to the allocation request. Table 3.2 shows the results of utilization taken for some

non-contiguous allocation strategies.

Figure 3.12: Average utilization vs. system load using uniform distribution in a 16x16 mesh with

communication pattern one to all.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

u
ti

li
za

ti
o
n

system load

One To All

MBS Paging(0,0) ISA random ff

www.manaraa.com

 48

Figure 3.13: Average utilization vs. system load using uniform distribution in a 16x16 mesh with

communication pattern all to all.

Figure 3.14: Average utilization vs. system load using uniform distribution in a 16x16 mesh with

communication pattern random.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

u
ti

li
za

ti
o
n

system load

All To All

MBS Paging(0,0) ISA random ff

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

u
ti

li
za

ti
o
n

system load

Random

MBS Paging(0,0) ISA random ff

www.manaraa.com

 49

Figure 3.15: Average utilization vs. system load using uniform distribution in a 16x16 mesh with

communication pattern near neighbors.

Table. 3.2: The results of utilization taken for some non-contiguous allocation and

contiguous allocation strategies for heavy system loads.

Algorithm
Utilization

One to all All to all Random Near neighbors

First Fit

MBS

Paging(0)

Random

ISA

61%

76.6%

76.6%

76.8%

76.6%

63%

76.8%

77%

82%

76.6%

56.5%

77%

77%

77%

77%

20.6%

78%

76.4%

81.5%

76.6%

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

u
ti

li
za

ti
o
n

system load

Near Neighbor

MBS Paging(0,0) ISA random ff

www.manaraa.com

 50

3.4 Conclusions

In this chapter, the performance of the non-contiguous allocation for 2D mesh-

connected multicomputer has been investigated. To this time, we have suggested a new

non-contiguous allocation strategy, referred to as Irregular Shape Allocation (ISA)

strategy, which differs from the earlier non-contiguous allocation strategies in the

method used for allocating the requested job. The ISA strategy allocates the job requests

based on the free processors available for allocation regardless of the shape of the

allocated sub-mesh. The ISA allocation depends on the number of free processors that is

sufficient for the requested job. Moreover, it maintains the contiguity as much as

possible.

The performance of ISA strategy was compared against that of existing non-contiguous

and contiguous allocation strategies. ISA performs well in terms of system utilization

and job turnaround time as compared to earlier non-contiguous allocation strategies for

the communication patterns, one to all and random and also it is superior for all to all

communication pattern. However, the performance of ISA is not better than that of the

previous strategies when the Near Neighbor communication pattern is considered.

www.manaraa.com

 51

Chapter 4

Conclusions and Future works

4.1 Summary of the Results

The aim of the present research is the development of a new non-contiguous allocation

strategy for 2D mesh-connected multicomputer. We summarize below the major

contribution in this study and the simulation results of this study.

The results of the previous research suggested (Fan Wu, Ching-Chi Hsu, and Chou, Li-

Ping, 2003, Lo, et al., 1997) that new non-contiguous allocation strategies for mesh-

connected multicomputer are needed. The motivation for the development of a new

non-contiguous allocation strategy for the 2D mesh network has been driven from the

observation that the existing non-contiguous allocation strategies suggested for the 2D

mesh achieve complete sub-mesh recognition capability provided that the allocated

shapes should be in regular rectangular shapes, which affect the system performance in

terms of average turnaround time negatively. Motivated by these observations, a new

non-contiguous allocation algorithm, referred to as Irregular Shape Allocation (ISA) has

been proposed. The proposed ISA strategy allocates the free sub-mesh in 2D mesh-

connected multicomputer regardless of the shape of the allocated sub-mesh.

Extensive simulation experiments under a variety of system loads have been carried out

in order to compare the performance of the proposed ISA strategy against well-known

non-contiguous allocation strategies (MBS, Paging(0), and Random) (Lo, et al., 1997),

and the contiguous FF allocation strategy (Zhu, Y. H, 1992). Our results show that the

www.manaraa.com

 52

performance of ISA is very close to that of the best non-contiguous allocation strategies

(e.g. Paging(0), MBS, Random) when communication patterns, one to all is considered.

Moreover, ISA performs much better than the previous non-contiguous allocation

strategies (e.g. Paging(0), MBS, Random) and contiguous FF allocation strategy, when

all to all and random communication pattern are considered.

4.2 Directions for the Future Work

The aim of ISA strategy is to increase the system utilization and reduce the turnaround

time as much as possible. The results of this thesis have shown that the ISA allocation

strategy have superior performance against that of the previous non-contiguous

allocation strategies suggested Paging(0) (Lo, et al., 1997), MBS (Lo, et al., 1997),

Random (Lo, et al., 1997), for the 2D mesh network. So, it would be interesting to adapt

the proposed ISA non-contiguous allocation strategy to be applicable for the 3D mesh-

connected multicomputer.

www.manaraa.com

 53

References

[1] Ababneh, I and Fraij, F. Folding contiguous and non-contiguous space

sharing policies for parallel computers, Mu’tah Lil-Buhuth wad-Dirasat,

Natural and Applied Sciences Series, vol. 16, no. 3, pp. 9-34, 2001.

[2] Ababneh, I. An efficient free-list submesh Allocation Scheme for two-

dimensional mesh-connected multicomputers, Journal of Systems and

Software, vol. 79, no. 8, pp. 1168-1179, August 2006.

 [3] Asanovic, K. RasBodik, Bryan Christopher Catanzaro, Joseph James

Gebis, Parry Husbands, Keutzer, David A Patterson, William Lester

Plishker, JoneShalf, Samuel Webb Williams, Katherine A. Yelick. The

Landscape of Parallel Computing Research: A View from Berkeley.

University of California, Berkeley. Technical Report No.UCB/EECS-

2006-183. 18- December-2006.

[4] Attari S and Isazadeh, A. Processor Allocation in Mesh Multiprocessors

Using a Hybrid Method, Proceedings of the Seventh International

Conference on Parallel and Distributed Computing, Applications and

Technologies (PDCAT'06), 0-7695-2736-1/06, 2006.

[5] Bani-Mohammad, S. Ould-Khaoua, M. Ababneh, I. and Machenzie, L.

Comparative Evaluation of the Non-Contiguous Processor Allocation

Strategies based on a Real Workload and a Stochastic Workload on

Multicomputers, Proceedings of the 13
th

 International Conference on

Parallel and Distributed Systems (ICPADS’07) , vol. 2, pp. 1-7, IEEE,

Hsinchu, Taiwan, December 5-7, 2007.

www.manaraa.com

 54

[6] Bani-Mohammad, S. Ould-Khaoua, M. Ababneh, I. and Machenzie, L.

Non-contiguous Processor Allocation Strategy for 2D Mesh Connected

Multicomputers Based on Sub-meshes Available for Allocation,

Proceedings of the 12
th

 International Conference on Parallel and

Distributed Systems (ICPADS’06), Minneapolis, Minnesota, USA, IEEE

Computer Society Press, vol. 2, pp. 41-48, 2006.

[7] Bani-Mohammad, S. Ould-Khaoua, M. Ababneh, I. and Mackhenzie,

Lewis M. Comparative evaluation of contiguous allocation strategies on

3D Mesh Multicomputers, Journal of System and Software, vol. 82, no. 2,

pp. 307-318, 2009.

[8] Bani-Mohammad, S. Ould-Khaoua, M. and Ababneh, I. An Efficient

Non-Contiguous Processor Allocation Strategy for 2D Mesh Connected

Multicomputers, Journal of Information Sciences, vol. 177, no. 14, pp.

2867-2883, 2007.

[9] Bunde, D. P. Leung, V. J. and Mache, J. Communication Patterns and

Allocation Strategies, Sandia Technical Report SAND2003-4522, Jan.

2004.

[10] Chang, C.-Y. and Mohapatra, P. Performance improvement of allocation

schemes for mesh-connected computers, Journal of Parallel and

Distributed Computing, vol. 52, no. 1, pp. 40-68, 1998.

[11] Chiu, G.-M. Chen, S.-K. An efficient submesh allocation scheme for two-

dimensional meshes with little overhead, IEEE Transactions on Parallel &

Distributed Systems, vol. 10, no. 5, pp. 471-486, 1999.

www.manaraa.com

 55

[12] Chuang, P.-J. Tzeng, N.-F. Allocating precise sub-meshes in mesh

connected systems, IEEE Transactions on Parallel and Distributed

Systems, vol. 5, no. 2, pp. 211-217, 1994.

[13] Cray, Cray XT3 Datasheet, available at:

http://www.craysupercomputer.com/downloads/CrayXT3/CrayXT3_Data

sheet.pdf, 15-april-2015.

[14] Fan Wu, Ching-Chi Hsu, and Chou, Li-Ping. Processor allocation in mesh

multiprocessors using the leapfrog method, IEEE transactions on parallel

and distributed system, vol. 14, no. 3, pp.276-289 , March 2003.

[15] Gara A., Blumrich M., Chen D., Chiu G.,Coteus P., Giampapa M., Haring

R., Heidelberger P., Hoenicke D., Kopcsay G., Liebsch T., Ohmacht M.,

Steinmacher B., Takken T., and Vranas P., "Overview of the Blue Gene/L

System Architecture," IBM journal of Research and Development, vol.

49, no. 2, pp. 195-212, 2005.

[16] Gottlieb, Allan. Almasi, George S. Highly parallel computing. Redwood

City, Calif.: Benjamin/Cummings. ISBN 0-8053-0177-1, 1989.

[17] Intel Crop, Paragon XP/S Product Overview, available at:

http://books.google.com/books/about/Paragon_XP_S_product_overview.h

tml?id=qkGNkgAACAAJ, 15-april-2015.

[18] Kumar, V. Grama, A. Gupta, A. and Karypis, G. Introduction To Parallel

Computing, The Benjamin/Cummings publishing Company, Inc.

Redwood City, California, 2003.

[19] Li, K. Cheng, K.-H. A Two-Dimensional Buddy System for Dynamic

Resource Allocation in a Partitionable Mesh Connected System, Journal

of Parallel and Distributed Computing, vol. 12, no. 1, pp. 79-83, 1991.

http://www.craysupercomputer.com/downloads/CrayXT3/CrayXT3_Datasheet.pdf
http://www.craysupercomputer.com/downloads/CrayXT3/CrayXT3_Datasheet.pdf
http://www.researchgate.net/publication/3300728_Processor_allocation_in_mesh_multiprocessors_using_the_leapfrog_method
http://www.researchgate.net/publication/3300728_Processor_allocation_in_mesh_multiprocessors_using_the_leapfrog_method
http://books.google.com/books/about/Paragon_XP_S_product_overview.html?id=qkGNkgAACAAJ
http://books.google.com/books/about/Paragon_XP_S_product_overview.html?id=qkGNkgAACAAJ

www.manaraa.com

 56

[20] Lo, V. and Mache, J. Job Scheduling for Prime Time vs. Non-prime Time,

Proceedings of the IEEE International Conference on Cluster Computing

(CLUSTER'02), pp. 488-493, 2002.

[21] Lo, V. Windisch, K. Liu, W. and Nitzberg, B. Noncontiguous processor

allocation algorithms for mesh connected multicomputers, IEEE

Transactions on Parallel and Distributed Systems, vol. 8, no. 7, IEEE

Press, Piscataway, NJ, USA, pp. 712-726, July 1997.

[22] Mache, J. Lo, V. and Garg, S. Job Scheduling that Minimizes Network

Contention due to both Communication and I/O, Proceedings of the 14
th

International Parallel and Distributed Processing Symposium(IPDPS'00),

pp. 457-463, 2000.

[23] Mache, J. Lo, V. and Windisch, K. Minimizing Message-Passing

Contention in Fragmentation-Free Processor Allocation, Proceedings of

the 10
th

 International Conference on Parallel and Distributed Computing

System, pp. 120-124, 1997.

[24] Moghaddam S. and Naghibzadeh, M. A New Processor Allocation

Strategy Using ESS (Expanding Square Strategy), Proceedings of the 14th

Euromicro International Conference on Parallel, Distributed, and

Network-Based Processing (PDP’06), 1066-6192/06, 2006.

[25] ProcSimity V4.3 User’s Manual, University of Oregon, 1997.

[26] Seo, K.-H. Fragmentation-Efficient Node Allocation Algorithm in 2D

Mesh-Connected Systems, Proceedings of the 8
th

 International

Symposium on Parallel Architecture, Algorithms and Networks

(ISPAN’05), IEEE Computer Society Press, Washington, DC, USA, 7-9

December, pp. 318-323, 2005.

www.manaraa.com

 57

[27] Windisch, K. Miller, J. V. and Lo, V. “ProcSimity: an experimental tool

for processor allocation and scheduling in highly parallel systems”,

Proceedings of the Fifth Symposium on the Frontiers of Massively

Parallel Computation (Frontiers'95), IEEE Computer Society Press,

Washington, USA, pp. 414-421, 6-9 Feb 1995.

[28] Yoo, B.-S. Das, C.-R. A Fast and Efficient Processor Allocation Scheme

for Mesh-Connected Multicomputers, IEEE Transactions on Parallel &

Distributed Systems, vol. 51, no. 1, pp. 46-60, 2002.

[29] Zhu, Y. H. Efficient processor allocation strategies for mesh-connected

parallel computers, Journal of Parallel and Distributed Computing, vol.

16, no. 4, pp. 328-337, 1992.

www.manaraa.com

 58

 الملخص

استراتيجيات : تصنف استراتيجيات تخصيص المعالجات في الحواسيب المتوازية الى صنفين

تشترط إستراتيجيات التخصيص . التخصيص المتجاور واستراتيجيات التخصيص غير المتجاور

المتجاور التجاور في ما بين المعالجات المخصصة لمهمة معينة وان تكون المعالجات المخصصه

التي تربط ما بين المعالجات في النظام، وهذا يؤدي بدوره الى حدوث ما بنفس شكل الشبكة

يسمى بمشكلة الكسيرات، والتي تؤثر سلباً على اداء النظام مما يؤدي الى زيادة الوقت الذي

جاءت استرتيجيات . تقضيه المهام في النظام وكذلك تقليل نسبة استغلال المعالجات في النظام

ر لحل مشلكة الكسيرات، حيث انها لا تشترط التجاور ما بين المعالجات التخصيص غير المتجاو

المخصصة لمهمة معينه مما يؤدي بالتالي الى تحسين اداء النظام فيما يتعلق بمعدل وقت مكوت

المهام في النظام وكذلك معدل استغلال المعالجات في النظام، وعلى الرغم من الزيادة في التزاحم

عالجات المخصصة في النظام نتيجة استخدام التخصيص غير المتجاور، الا ان ما بين رسائل الم

هذا النوع من الاستراتيجيات يؤدي الى التخلص من مشكلة الكسيرات وبالتالي زيادة استغلال

 . معالجات النظام

معظم استراتيجيات التخصيص غير المتجاور في متعددات الحواسيب الشبكية الموجودة حالياً

بالإضافة إلى النظامالمختلفة داخل المهامالكسيرات والتداخل بين الرسائل ضمن مشكلة من تعاني

في التخصيص اذا كان هناك اي تجاور ما بين المعالجات، (المستطيل) حاجتها إلى الشكل المنتظم

مى إستراتيجية إستراتيجية تخصيص غير متجاور جديدة تسلذلك فقد اقترحنا في هذه الرسالة

والتي تحد من مشكلة (ISA) (Irregular Shape Allocation Strategy) الغير منتظمشكل ال

 كانت الفكرة الرئيسية من التداخل بين الرسائل ضمن الشبكة، حيث الكسيرات وتخفف من

للحصول على درجة من التجاور ما بين المعالجات المخصصة لمهمة أنه الاستراتيجية الجديدة

www.manaraa.com

 59

على شكل) يشترط ان يكون شكل شبكة المعالجات المخصصة للمهمة منتظماً معينه، فإن ذلك لا

رعية المخصصة يمكن حيث أن الشبكة الف, لسابقة الأخرىفي الاستراتيجيات ا هو كما (مستطيل

اداء النظام من حيث إلى تحسين بدوره وهذا يؤدي(منتظم أو غير منتظم)أن تكون على أي شكل

 .لنظام وكذلك معدل استغلال المعالجات في النظاممعدل مكوث المهام في ا

ممثلة استراتيجيات التخصيص المتجاوراداء مع (ISA)اداء الخوارزمية الجديدة تمت مقارنة

 ,Random) ممثلة بالاستراتيجيات التالية والغير متجاور (First Fit)باستراتيجية الـ

Paging(0), Multiple Buddy Strategy) ،النتائج بإن اداءوقد أظهرت باستخدام المحاكاة

هو قريب جداً من اداء خوارزميات التخصيص غير المتجاور (ISA)الاستراتيجية المقترحة

، وذلك عند استخدام نمط التراسل (Paging(0) and Multiple Buddy Strategy)السابقة

(One to All)يص غير المتجاور ، في حين انها افضل من استراتيجية التخص(Random)

 ، كما أظهرت النتائج أن اداء(First Fit)وكذلك افضل من اداء استراتيجية التخصيص المتجاور

افضل من اداء الاستراتيجيات الاخرى المتجاورة والغير متجاورة (ISA)الاستراتيجية المقترحة

اداء ظهرت النتائج أن في حين أ ،(Random and All to All)عند استخدام نمطي التراسل

افضل من اداء استراتيجيات التخصيص (First Fit)ممثلة بالـ التخصيص المتجاور استراتيجيات

 (.Near Neighbor)غير المتجاور عند استخدام نمط التراسل

